
IJSRST174604 | Published :25 March 2018 | March-April-2018 [(4)6: 16-19]

© 2018 IJSRST | Volume 4 | Issue6 |Print ISSN: 2395-6011 | Online ISSN: 2395-602X

National Conference on Smart Computation and Technology in Conjunction with The Smart City Convergence 2018

16

Machine Vision Algorithms implementation in Ruby
Bhaskar Sharma*, Ankit Sarswa, Gopesh Kumar Sharma

Computer Engineering Department, Institute Of Engineering and Technology , Jaipur, Rajasthan, India

ABSTRACT

In current scenario, machine vision systems (at least machine vision algorithms(MVA)) are preponderantly

implemented using statically typed programming languages such as C, C++, or Java. However, statically

typed languages are not suitable for development and maintenance of large scale systems. Dynamically

typed languages are generally not considered while choosing a programming language due to their lack of

support for high-performance array operations. This review paper presents efficient implementations of

MVA with the dynamically typed programming language Ruby. The Ruby programming language is used in

this paper review because it offers the best support to meta-programming from other conventional

programming languages. A Ruby library-Hornetseye is reviewed for performing array operations as portion

of this paper. It is shown that the library eases brief implementations of MVA that are commonly used in

industrial automation. That is, this paper is about implementing machine vision systems in different

way.The performance of general operations in ruby is compared with the performance of equivalent C/C++

programs to validate the approach.

Keywords: Ruby, Machine Vision Algorithms, Dynamic Programming Language

I. INTRODUCTION

Machine vision is a vast field and in many cases

there are various independent approaches solving a

specific problem. Also, it is oftentimes difficult to

preconceive which particular approach will give the

best results. Therefore it is significant to maintain

the agility of the system to be able to implement

necessary changes in the concluding stages of a

project.

A traditional application of computer vision is

industrial automation. That is, the cost of

implementing a machine vision system eventually

needs to be recovered by savings in labour cost,

increased productivity, and/or better quality in

manufacturing. However, statically typed

programming language such as C, C++, or Java are

still mostly used to implement machine vision

systems. Development and maintenance of large

scale systems using a statically typed language is

much more expensive compared to when using a

dynamically typed languages.

This paper shows how the dynamically typed

programming language Ruby can be used to reduce

the cost of implementing machine vision algorithms.

A Ruby library is reviewed which facilitates rapid

prototyping and development of machine vision

systems.

The downside of using a compiled language is that a

developer is required to make changes to the source

code, save them in a file, compile that file to create a

binary file, and then re-run that binary file. In

contrast, interpreted languages o er considerable

savings in development time. In an interpreted

language the developer can enter code and have it

run straight away.

II. RUBY PROGRAMMING LANGUAGE

The Ruby programming language is an interpreted,

pure object-oriented, and dynamically typed

general purpose programming language.

Furthermore Ruby sup-ports closures and meta-

programming. Also Ruby has a straightforward API

for writing extensions. Finally Ruby currently is on

place 11 of the Tiobe Programming Community

IJSRST174604 | Published :25 March 2018 | March-April-2018 [(4)6: 16-19]

© 2018 IJSRST | Volume 4 | Issue6 |Print ISSN: 2395-6011 | Online ISSN: 2395-602X

National Conference on Smart Computation and Technology in Conjunction with The Smart City Convergence 2018

17

Index.. Ruby is a multi-paradigm language and it is

inspired by Perl, Python, Smalltalk, Eiffel, Ada,

and Lisp. Ruby supports the following language

features:

 Object-oriented

 Single-dispatch dynamic typing

 Exception handling

 Garbage collection (i.e. managed environment)

 Mixins

 Closures

 Continuations introspection

 Meta programming

 Reification.

Software integration in Ruby is easy because:

 interfacing with native code for writing

extensions is simple.

 classes can still be modified after

declaration.

 Ruby uses duck-typing, i.e. two objects are

compatible if they support the same

methods and properties.

The design philosophy of the Ruby programming

language follows the following principles:

 Brevity: The language is expressive so that

programs written in that language are succinct.

 Conservatism: Ruby sticks to traditional control

structures to reduce the cost of adoption.

 Simplicity: The Ruby programming language

supports simple solutions.

 Flexibility: Ruby should adapt to the user

instead of the user adapting to Ruby.

 Balance: The Ruby programming language tries

to achieve a balance between all these concepts.

 Energy/cost consumed,

 Time/cost to network partition,

 Variation in node power levels,

 Cost/packet ,and

 Maximum node cost

III. STATICALLY TYPED LIBRARIES

Most computer vision libraries are implemented in

the statically typed C/C++ language. However C++

has a split type system. There are primitive types

which directly correspond to registers of the

hardware and there are class types which support

inheritance and dynamic dispatch. In C++ not only

integers and floating point numbers but also arrays

are primitive types. However these are the most

relevant data types for image processing. To

implement a basic operation such as adding two

values so that it will work on different types, one

needs to make extensive use of template meta-

programming. That is, all combinations of

operations, element-type(s), and number of

dimensions have to be instantiated separately. For

example the FrameWave1 C-library has 42

explicitly instantiated different methods for

multiplying arrays. For this reason most libraries do

not support all possible combinations of element-

types and operations.

Static typing not only leads to an explosion of

methods to instantiate. A related problem caused by

static typing is that when a developer wants to

modify one aspect of the system, the static typing

can force numerous rewrites in unrelated parts of

the source code (Tratt and Wuyts, 2007). Static

typing enforces unnecessary “connascence” (a tech-

nical term introduced by Weirich (2009)) which

interferes with the modularity of the software. In

practise this causes problems when implementing

operations involving scalars, complex numbers, and

RGB-triplets.

OpenCV: It (Open Source Computer Vision Library)

is an open source computer vision and machine

learning software library. The library consist of

more than 2500 optimized algorithms, which

includes a comprehensive set of both classic and

state-of-the-art computer vision and machine

learning algorithms.

IV. STATICALLY TYPED EXTENSIONS

Some computer vision libraries come with bindings

in order to use them as an exten-sion to a

dynamically typed language. For example for the

OpenCV2 library there are Python bindings

(PyCV3) as well as Ruby bindings

(opencv.gem4).This allows one to use a statically

typed extension in an interpreted language and it

becomes possible to develop machine vision

IJSRST174604 | Published :25 March 2018 | March-April-2018 [(4)6: 16-19]

© 2018 IJSRST | Volume 4 | Issue6 |Print ISSN: 2395-6011 | Online ISSN: 2395-602X

National Conference on Smart Computation and Technology in Conjunction with The Smart City Convergence 2018

18

software interactively without sacrificing

performance.Open classes and dynamic typing

make it possible to seamlessly integrate the

functionality of one library into the application

programming interface (API) of another. However

supporting all possible combinations of types and

operations with a statically typed library is hard (see

Section 3). In practise most computer vision

extensions only provide a subset of all combinations.

n general it is not possible to instantiate e cient

implementations of all the possible combinations of

operations and compile them ahead-of-time.

dynamic typing facilitates much more concise code

than static typing.

V. DYNAMICALLY TYPED LIBRARIES

There are a number of active free and open source

software projects in the area of machine vision.

These contain ITK, NASA Vision Workbench,

OpenCV, OpenVidia, Camellia, PyGPU, and

Gamera to name only a few. Machine vision

systems require software for handling video and

image files, accessing cameras, and visualizing

results. To keep the size of the project manageable it

is mandatory to make use of existing software

projects. Although open source packages and

libraries are available for free, integrating it requires

significant time and effort.

To port all required software to Ruby is desirable so

as to take full advantage of the language properties.

However for input and output (e.g. capturing

camera images and displaying videos) it is necessary

to interface with native code. In addition it is

necessary to implement computationally expensive

parts of the code in C/C++ as long as there is no

sufficiently strong run-time optimizer for Ruby.

The quickest way to integrate an existing C/C++

library into Ruby is to use the bindings-generators.

However simply making the static data types of a

C/C++ library visible in Ruby is insufficient for fully

exploiting the features of Ruby. An array data type

to handle multi-dimensional arrays with elements

of a single type was implemented in Ruby library

HornetsEye, inspired by NArray.

NArray: NArray is an Numerical N-dimensional

Array class. Element types supported are 1/2/4-byte

Integer, single/double-precision Real/Complex, and

Ruby Object. This extension library incorporates

fast calculation and easy manipulation of large

numerical arrays into the Ruby language. It has

features similar to NumPy, but NArray has vector

and matrix subclasses. NArray provides fast

element-wise operations combined with methods

to manipulate single elements or subarrays.

However in contrast to NArray our data type is

largely implemented in Ruby and thus allows

definition of custom element-types.

HornetsEye: HornetsEye is a real-time computer

vision library for the Ruby programming language.

HornetsEye is maybe the first free software project

providing a solid platform for implementing real-

time computer vision software in a scripting

language. The library could effectively be used in

industrial automation, robotic applications, and

human computer interfaces. It is an extension for

Ruby which facilitates rapid development of

machine vision software and and provide a high

amount of flexibility without sacrificing real-time

capabilities.

VI. PERFORMANCE

Comparison of HornetsEye with NArray and C++:

Figure 6.1 shows the time required for running the

operation “m + 1” for arrays of different size. The

array “m” is single-precision floating point array

with 500 500 elements.

IJSRST174604 | Published :25 March 2018 | March-April-2018 [(4)6: 16-19]

© 2018 IJSRST | Volume 4 | Issue6 |Print ISSN: 2395-6011 | Online ISSN: 2395-602X

National Conference on Smart Computation and Technology in Conjunction with The Smart City Convergence 2018

19

Figure 6.1. Processing time of running “m + 1” one-hundred

times for different array sizes

Code Size of Programs: Ruby implementation is

significantly shorter and the semantics of Ruby is

simpler. Ruby+Hornetseye requires half as many

lines of code as the Python+OpenCV

implementation. Also the semantics of the Ruby

implementation is much more concise.

Figure 6.2. Speed comparison for array-scalar multiplication

Contrary to common belief, an interpreted language

can be faster than a static implementation. Table

Ishows that the garbage collector of Ruby can be

faster than the static memory management of a

naive C++ implementation.

Table 1

The C++ library seems to be much faster when

copying arrays or when filling them with a value is

required. This is probably due to the fact that

neither NArray nor HornetsEye are currently

making use of the highly optimized routines of the

C++ standard template library.

The C++ implementation is much faster for small

sizes than both Ruby implementations. The reason is

that the array manipulations in Ruby and the

garbage collector have a larger overhead. For larger

arrays the benefits of the garbage collector become

dominant.For bigger arrays HornetsEye is the most

efficient implementation.

VII . CONCLUSION

Existing free and open source software (FOSS) for

machine vision is predominantly implemented in

C/C++. Albeit the performance of machine code

generated by C/C++ compilers is high, the static type

system of the C++ language makes it exceedingly

difficult to provide a complete and coherent basis for

developing machine vision software.It is hard to

support all possible combinations of operations and

native data types in a statically typed language.

Therefore most libraries implemented in such a

programming language only support some

combinations (e.g. OpenCV and NArray). In contrast

Ruby already comes with a set of numeric data types

which can be combined seamlessly.

The contribution of this paper is a machine vision

system which brings together productivity and

performance by implementing machine vision

algorithms in ruby. The dynamic programming

languages facilitates concise and flexible

implementations which means that developers can

achieve high productivity. It is presented how the

library reviewed in this paper can competitively

perform to implement machine vision algorithms.

VIII. FUTURE WORK

Although in this review paper, the Ruby

programming language was used, machine vision field

could significantly benefit from any dynamic

programming language which offers equal or stronger

Hornetseye

2

NArray

sec
ond

s

C++

=ti
me

1

0

0 2;000 4;000 6;000 8;000 10;000

size=kByte

7
HornetsEye

6
N A rr a y

C++

5

tim

e/
m s

4

3

2

1

0
0 200000 400000 60 0 0 0 0 800000 1e + 0 6

size

Mim as /Boost NArray HornetsEye

constructor 2.7 ms 8.4 ms 7.8 ms
m.fill(1) 2.7 ms 2.7 ms 2.8 ms
m*m 6.8 ms 10.0 ms 8.1 ms
m*2 6.7 ms 8.9 ms 7.2 ms
subarray 3.0 ms 2.2 ms 3.7 ms

IJSRST174604 | Published :25 March 2018 | March-April-2018 [(4)6: 16-19]

© 2018 IJSRST | Volume 4 | Issue6 |Print ISSN: 2395-6011 | Online ISSN: 2395-602X

National Conference on Smart Computation and Technology in Conjunction with The Smart City Convergence 2018

20

for meta-programming support. Meta-programming is

the ability of program to change itself during run-

time. This facilitates implementation of optimization

algorithms which would be hard to do in currently

popular programming languages. Possible future work

is the development of efficient libraries for dynamic

languages out of conventional approaches.

IX. REFERENCES

[1] M. Boissenin, J. Wedekind, A. N. Selvan, B. P.

Amavasai, F. Caparrelli, and J. R. Travis.

“Computer vision methods for optical

microscopes, Image and Vision Computing.”

http://dx.doi.org/10.1016/j.imavis.2006.03.009

[2] Hal Fulton. The Ruby Way. Addison Wesley.

http:// rubyhacker.com/

[3] Baker and I. Matthew. Lucas-Kanade 20 years

on: A unifying framework. International Journal

of Computer Vision. http://www.ri.

cmu.edu/projects/project_515.html

http://dx.doi.org/10.1016/j.imavis.2006.03.009

